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Method for Infrared Spectral Compression
Based on the Embedded Zerotree Wavelet

Menglong Li, Fusheng Nie, Huayi Qi, Zhining Wen, and Bin Kang

College of Chemistry, Sichuan University, Chengdu, Sichuan,

People’s Republic of China

Abstract: In this paper, the embedded zerotree wavelet (EZW) method and Huffman

coding is proposed for the compression of infrared (IR) spectra. This technique is

described based on the wavelet transform (WT) and tested with IR spectra of some

compounds and compared with another compression technique. The results showed

that this technique is better than others in terms of efficiently coding wavelet coeffi-

cients, because the zerotree quantization is an effective way of exploiting the self-

similarities of wavelet coefficients at various resolutions.

Keywords: Compress, Embedded zerotree wavelet, Infrared spectra, Wavelet

transform

INTRODUCTION

The wavelet transform (WT) has been developed rapidly in recent years and has

been found to play a significant role in signal processing. From 1989 onwards,

the WT has been applied in chemical studies owing to its efficiency, the large

number of basis functions available, and the high speed in data treatment.[1,2]
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Infrared (IR) spectroscopy has found widespread use in the identification

and characterization of chemicals. IR spectral libraries such as the Aldrich

Library have been established for this purpose. In general, the more infor-

mation stored within the spectrum, the better for searching the database.

However, as the size of a library increases, more space and a longer time

for searching the library are required. To tackle the problem, researchers

may use several approaches. An important one is to compress the spectra to

a smaller data set. The WT has been proposed for the purpose, but the

question is how to achieve the most efficient compression. For example,

how to process these wavelet coefficients efficiently is a problem remaining

to be solved. In previous work, most researchers often discarded small-

amplitude values directly but without considering the self-similarities of

wavelet coefficients at various resolutions.[3 – 10] In this work, we applied a

different WT procedure. The embedded zerotree wavelet (EZW) algorithm,

which was initially proposed by Shapiro to process images,[11] was first

used in analytical chemistry in this work.

THEORY

The EZW algorithm is a simple yet remarkably effective compression

algorithm, having the property that the bits in the bitstream are generated in

order of importance, yielding a fully embedded code. The EZW encoder is

based on progressive encoding to compress a spectrum into a bitstream with

increasing accuracy. This means that when more bits are added to the

stream, the well-encoded spectrum will contain more detail. Every added

digit increases the accuracy somehow, and it can be stopped at any

accuracy we like. Furthermore, this algorithm requires no training, no

prestored table or codebooks, and requires no prior knowledge of spectra.

Wavelet Transform

Wavelets have shown great applicability in many diverse fields of science.

Anything that involves the analysis of a time series is a good candidate for

the wavelet treatment. The basic idea of wavelet analysis is that of multi-

resolution. All of the basis functions are self-similar because they are

derived from one prototype. A number of “self-similar” wavelets can be

obtained from the mother wavelet by two process: (1) shifts in time

variable that are needed to cover the whole signal range, and (2) dilations

(or scaling), which allows a multiresolution analysis (MRA) of signals. A

specific introduction to the theory on wavelets and MRA has been

described in Refs.[12 – 15]
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A signal function or vector (e.g., an IR spectrum) can be represented in

WT at different scales and positions. Let the experimental data be expressed

in digital form as

Cð0Þ ¼ fc
ð0Þ
1 ; c

ð0Þ
2 ; . . . ; c

ð0Þ
N g ð1Þ

at the lowest resolution level 0. Applying MRA to C(0), we get the scale C(1)

and wavelet D(1) coefficients at the first level J ¼ 1:

Cð1Þ ¼ c
ð1Þ
1 ; c

ð1Þ
2 ; . . . ; c

ð1Þ
N=2

n o
ð2Þ

Dð1Þ ¼ d
ð1Þ
1 ; d

ð1Þ
2 ; . . . ; d

ð1Þ
N=2

n o
ð3Þ

Then, the decomposition process is applied to C(1) again to obtain C(2), D(2).

The process is repeated until the preset resolution level J is reached

(Fig. 1). Finally, the signal C(0) is transformed into detailed components at

different levels as

WTfCð0Þg ¼ fCðJÞ;DðJÞ;DðJ�1Þ; . . . ;Dð1Þg ð4Þ

which are called the wavelet representation of C(0), with the data number equal

to that of the original signal.

Because of the self-similarities among D(1), D(2), . . ., D(J21) and D(J),

EZW is thought to be the most efficient compression method. In fact, EZW

reorders wavelet coefficients in such a way that they can be compressed

very efficiently.

Figure 1. A diagram to show data decomposition at different resolution levels with

the use of MRA.
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Zerotree

The hierarchical structure at various scales and the self-similarity allow for a

new quantization method called zerotree quantization.[11 – 15] The zerotree is

a simple tree-structured significance scheme. We use it for quantizing an

n-vector Y ¼ (Y1, Y2, . . ., Yn). The basic data structure in the scheme is a

tree or a set of trees in which each leaf corresponds to one of the scalars Yk.

Given a threshold TH, a wavelet transform coefficient x is defined as significant

with respect to a threshold TH if jxj � TH, otherwise x is said to be insignif-

icant. The main trust of this quantization strategy is in the prediction of corre-

sponding wavelet coefficients at the finer scales by exploiting the hierarchical

structure and reducing the cost of encoding the significance scheme by exploit-

ing the self-similarity. More traditional techniques are employing transform

coding via some form of run-length encoding. It requires a symbol for each

run-length, which must be encoded. Zerotree coding, however, will only

encode a “terminating” symbol, which indicates that all remaining wavelet

coefficients approximately equal to zero. In fact, this approach works well in

terms of efficiently coding the wavelet coefficients. The zerotree is based on

the hypothesis that if a coefficient at a coarse scale is insignificant with

respect to a threshold, then all of its descendants, as defined below, are also

insignificant and can be predicted. Empirical evidence suggests that this

hypothesis is often true. The coefficient at the coarse scale is called the

parent, and the coefficients corresponding to the same spatial location at the

next finer scale of similar orientation are called children. For a given parent,

the set of all coefficients at all finer scales of similar orientation corresponding

to the same location are called descendants. Similarly, for a given child, the set

of coefficients at all coarser scales of similar orientation corresponding to the

same location are called ancestors (Fig. 2). For example, the children of d3
(2) are

d5
(1) and d6

(1). The descendants of d2
(3)are d3

(2), d4
(2), d5

(1), d6
(1), d7

(1), and d8
(1).

Figure 2. The relations between wavelet coefficients at different scales (left), how to

scan them (middle), and the results of using zerotree symbols (T) in the coding process

(right). An H means that the coefficient is higher than the threshold and an L means that

it is below the threshold. The zerotree symbol (T) replaces some Ls.
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Now let’s see how to encode coefficient values. After taking the discrete

wavelet transform of a set of spectra data, all wavelet transform coefficients

except the approximate coefficients C will be ordered in such a way that the

coefficients at coarser scale will come before the coefficients at finer scale.

Given a threshold TH to determine whether or not a coefficient is significant,

a coefficient x is said to be an element of a zerotree for threshold TH if itself

and all of its descendants are insignificant with respect to TH. An element of a

zerotree for threshold TH is a zerotree root if it is not the descendant of a pre-

viously found zerotree root for threshold TH (i.e., it cannot be predicted and is

insignificant from the discovery of a zerotree root at a coarser scale with the

same threshold). A zerotree root is encoded with a special symbol indicating

that the insignificance of the coefficients at finer scales is completely predict-

able. Thus, in practice, four symbols are used: (1) (T) zerotree root; (2) (Z)

isolated zero, which means that the coefficient is insignificant and is not an

element of the zerotree; (3) (P) positive and significant coefficient; (4) (N)

negative and significant coefficient.

A WT transforms a signal from the time domain to the joint time-scale

domain. This means that the wavelet coefficients are two-dimensional. If we

want to compress the transformed signal, we have to code not only the coeffi-

cient values, but also their positions in time. Indeed, without the information

of the positions, the decoder will not be able to reconstruct the encoded signal.

It is the encoding of positions that makes some encoders efficient and the

others inefficient. Now if a scan order is predefined to scan the spectrum,

going from the coarsest scale to the finest, implicitly many positions are

coded through the use of zerotree symbols (Fig. 2).

Embedded Coding

Zerotree coding can perform so well on encoding the wavelet coefficients that

it can be expected to encode the spectra more efficiently. So successive-

approximation quantization (SAQ) is applied to perform the embedded

coding.[11] In fact, embedded coding is similar in spirit to binary finite-

precision representations of real numbers. All real numbers can be represented

by a string of binary digits. Every digit we add increases the accuracy of the

number, but we can stop at any accuracy we like. The SAQ sequentially

applies a sequence of thresholds TH0, . . ., THN21 to determine significance,

where the thresholds are chosen so that THi ¼ THi21/2. If the threshold

sequence is a sequence of power of two, it is called bit plane coding, as the

thresholds in this case correspond to the bits in the binary representation of

the coefficients. EZW encoding uses this type of coefficient value encoding.

First, all wavelet coefficients are measured against the initial threshold

with a predefined scanning order, and a symbol is assigned to every coefficient.

If an absolute value of the wavelet coefficient is larger than the threshold, it is
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encoded with a “P” (for a positive) or an “N” (for a negative) and subtracts the

threshold from the coefficient. If the wavelet coefficient is smaller and not a

root of a zerotree, it is encoded with a “Z” (isolated zero) and left for the

next scanning process. If the wavelet coefficient is smaller and is a root of a

zerotree, it is encoded with a “T” (zerotree) and ignores all its descendants.

Then, when all the wavelet coefficients are visited, the threshold is lowered,

and the spectrum is scanned again to add more detail to the already encoded

spectrum. This process is repeated until all the wavelet coefficients are

encoded completely or some criterion is satisfied.

The initial threshold T0 is chosen so that jxjj , 2TH0 for all transform

coefficients xj. If we adopt bit plane coding then it will be

TH0 ¼ M2E ð5Þ

where E is an integer, and M is a constant.

The width of quantizer step size defines an uncertainty interval for the true

magnitude of the coefficient. The reconstruction value can be anywhere in that

uncertainty interval. But a practical approach used in the experiments,

MINMAX optimal, is simply to use the center of the uncertainty interval as the

reconstruction value. So in step 0, when xj is coded as “P,” the reconstruction

value xj
0 is TH0þ TH0/2 ¼ 3M2E21 and the remainder rj is xj 2 3M2E21,

which satisfies:

jrjj ¼ jxj � 3M2E�1j � TH0=2 ¼ TH1 ð6Þ

To perform this coding process better, in practice, two symbols P0 and P1 are used

for positive significant coefficients; N1 and N0 are used for negative significant

coefficients. If xj , TH0þ TH0/2, xj is coded as P0 and its reconstruction value

xj
0 is TH0þ TH0/2 2 TH0/4 ¼ 5M2E22. If xj � TH0þ TH0/2, xj is coded as

P1 and xj
0 is TH0þ TH0/2þ TH0/4 ¼ 7 M2E22. Then

jrjj � TH0=2
2 ¼ TH2 ð7Þ

Negative significant coefficients are coded as N0 and N1 similarly.

When all the coefficients have been scanned, the remainders are scanned

with the threshold that is halved. The process is similar to the fore step. In step

N 2 1, the scanning process will be ended if all the remainders can be con-

sidered as zeros. This is SAQ. Of course, the process can be ended at any

step according to actual needs.

Huffman Coding

EZW encoding does not really compress anything, it only reorders wavelet

coefficients in such a way that they can be compressed very efficiently.

Therefore, a symbol encoder should always follow an EZW encoder. The
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Huffman coding method, one of the most popular entropy coding techniques,

may be adopted.

In Huffman coding, symbols with higher probabilities are encoded with

shorter codewords than the others. The generated codewords are of variable

lengths. In this work, the output symbols produced by EZW can be considered

as source symbols. The codeword assigned for the element of Z or T with the

highest probability consists of two bits, which occupies the least storage space.

Then four-bit codewords are designated for P1, P0, N1, and N0 that occur with

the lowest probability. The Huffman code thus is a compact one with an

average word length less than or equal to the average length of all other

uniquely decodable codes for the same set of input probabilities, that is, it

is a minimum-length code.

EXPERIMENTAL

In this work, we used 10 IR spectra to test the performance of compression.

The IR spectra were exported from the Aldrich Condensed Phase Library

by using the Nicolet OMNIC FT-IR software package. Each IR spectrum

contains 460 data points.

All computations were carried out in Microsoft Windows 98 environment

on a PC compatible with a Pentium processor. The programs WTRAN.M and

IWTRAN.M were coded in MATLAB for carrying out the WT and inverse

WT, respectively. The embedded zerotree procedure and Huffman coding

and decoding process were performed with the use of the READ.CPP and

UNREAD.CPP programs, which were developed in the Cþþ language.

RESULTS AND DISCUSSION

The proposed EZW method and Huffman coding algorithm were applied to

compress the IR spectra of 10 compounds. The WTRAN.M program was

used with the use of the biorthogonal wavelet series of bior1.1, bior2.8,

bior3.7, bior4.4, and bior6.8.

In this work, the compression ratio, CR, measured the compression

efficiency of the method mentioned above.

CR ¼ No. of bytes of the original data=No. of bytes of the compressed data

ð8Þ

Ideally, the spectrum reconstructed from the compressed data is identical to

the original one. In practice, this is not true, even if no data process is

applied in the WT treatment, because of computational errors. The root-

mean-square difference (RMSD) between the original spectrum fCK
(O)
g and
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the reconstructed spectrum fCK
(R)
g was used to judge the validity of the

proposed methods and is defined by

RMSD ¼
1

N

XN

K¼1

ðc
ðOÞ
K � c

ðRÞ
K Þ

2

" #1=2

ð9Þ

Tables 1 and 2 shows the results obtained using different orders of biorthogo-

nal wavelet. The resolution level J was set at a value of 6 and the final

threshold THN21 was select to 0.015. In the last two rows of these tables,

the average and standard deviation were calculated. It was found that these

CRs are nearly same. From the viewpoint of the theory of function approxi-

mation, the principle of compression is to use as few terms of the sum of

the basis functions as possible to approximate the original signal. The more

similar the original signal to the basis function, the fewer the number of

needed terms and therefore the higher the compression rate. Therefore, the

CR of a simple spectrum must be large when compressed by a simple

wavelet function, while the CR must be small by a complicated wavelet

function. For example, the waveform of bior1.1 is simpler than that of

Table 1. Results of applying the EZW methods to compress IR spectra of the 10 com-

pounds by using the biorthogonal wavelet functions bior1.1, bior2.8, and bior3.7

Spectra

bior1.1 bior2.8 bior3.7

CR RMSD CR RMSD CR RMSD

Tridecane, 99þ% 8.58 0.0050 8.27 0.0037 8.27 0.0047

(1S)-(–)-b-Pinene, 98% 6.32 0.0063 6.32 0.0081 6.07 0.0080

1-Chlorohexadecane,

99%

7.84 0.0054 7.34 0.0045 7.84 0.0052

1,5-Diiodopentane, 97% 7.58 0.0053 6.89 0.0047 7.00 0.0051

Pentachloroethane, 96% 11.1 0.0051 8.58 0.0045 8.27 0.0049

Tetrachloroethylene,

99þ%

12.3 0.0048 10.83 0.0047 10.34 0.0051

1,3,5-Triphenylbenzene,

97%

5.83 0.0055 5.62 0.0062 5.42 0.0071

3-Chlorobenzyl

chloride, 98%

6.89 0.0073 6.23 0.0067 6.07 0.0075

Decyl alcohol, 99% 5.83 0.0071 6.89 0.0053 7.71 0.0066

4-t-Butylcyclohexanol,

mixture of isomers

5.91 0.0098 5.76 0.0055 5.62 0.0050

Average 7.818 0.00616 7.273 0.00539 7.261 0.00592

Standard deviation 2.264 0.00155 1.587 0.00130 1.529 0.00124

EZW, embedded zerotree wavelet; IR, infrared; CR, compression ratio; RMSD,

root-mean-square difference.
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bior6.8. So the CR of simple spectrum (pentachloroethane) is 11.1 when using

bior1.1, and it is 7.84 when using bior6.8. Similarly, the CR of a complicated

spectrum must be small when compressed by a simple wavelet function, while

the CR must be large by a complicated wavelet function. For instance, the CR

of complicated spectrum (1,3,5-triphenylbenzene) is 5.83 if using bior1.1, and

it is 6.32 if using bior6.8. Now some of the 10 spectra are simple and some of

them are complicated. So the mean CRs with using different orders of biortho-

gonal wavelet are close to each other.

Then, we calculated the average CR and RMSD of each spectrum by

using different wavelets (Table 3). One may conclude from the experimental

data that a more complicated spectrum would result in a smaller CR. This

observation can be explained by the fact that more peaks in the spectrum

would give more high-frequency components in the wavelet domain. So

this means that there are more significant coefficients in finer scales. This

will lead to less zerotrees. Hence, more bits are needed to code them. Plots

of the spectra with the highest CR and the lowest CR are given in Fig. 3

and Fig. 4, respectively. It is very clear that the simplest spectrum (tetrachlor-

oethylene) holds the largest CR ¼ 11.03 (Fig. 3) while the most complicated

spectrum (1,3,5-triphenylbenzene) holds the smallest CR ¼ 5.71 (Fig. 4).

In order to show the performance of the proposed compression method,

we made a simple comparison. CR and RMSD were chosen as the key

parameters for comparison. Table 4 shows the results in which method I

Table 2. Results of applying the EZW methods to compress IR spectra of the 10 com-

pounds by using the biorthogonal wavelet functions bior4.4 and bior6.8

Spectra

bior4.4 bior6.8

CR RMSD CR RMSD

Tridecane, 99þ% 8.43 0.004 8.92 0.0061

(1S)-(2)-b-Pinene, 98% 6.23 0.0068 5.83 0.0064

1-Chlorohexadecane, 99% 7.71 0.0044 8.13 0.007

1,5-Diiodopentane, 97% 6.79 0.0043 7.58 0.0065

Pentachloroethane, 96% 8.43 0.0037 7.84 0.0042

Tetrachloroethylene, 99þ% 11.1 0.0055 10.58 0.0038

1,3,5-Triphenylbenzene, 97% 5.35 0.0058 6.32 0.009

3-Chlorobenzyl chloride, 98% 6.15 0.006 5.99 0.0058

Decyl alcohol, 99% 7.71 0.0056 7.84 0.0063

4-t-Butylcyclohexanol,

mixture of isomers

5.91 0.0052 6.41 0.0067

Average 7.381 0.00513 7.544 0.00618

Standard deviation 1.691 0.00099 1.482 0.00144

EZW, embedded zerotree wavelet; IR, infrared; CR, compression ratio; RMSD,

root-mean-square difference.
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represents the proposed algorithm in this work, whereas method II represents

the direct thresholding method as most researchers did in the previous similar

work. It was found that our method gives superior performance. CR improves

36.1% on average and the biggest improvement by 68.1%. By the way, it is

commonsense that the original data size will influence compression ratio.

Under the other same conditions, the larger the original data number is, the

higher the compression ratio is. In our experiment, the data number was

460, whereas in the previous similar work it was often larger. So, it is

Table 3. The average CR and RMSD of each spectrum by using different wavelet

functions

Spectra

Average Standard deviation

CR RMSD CR RMSD

Tridecane, 99þ% 8.494 0.00470 0.2708 0.000941

(1S)-(2)-b-Pinene, 98% 6.154 0.00712 0.2079 0.000870

1-Chlorohexadecane, 99% 7.772 0.0053 0.2863 0.00104

1,5-Diiodopentane, 97% 7.168 0.00518 0.3834 0.000832

Pentachloroethane, 96% 8.844 0.00448 1.291 0.000559

Tetrachloroethylene, 99þ% 11.03 0.00478 0.7643 0.000630

1,3,5-Triphenylbenzene, 97% 5.708 0.00672 0.3900 0.00141

3-Chlorobenzyl chloride, 98% 6.266 0.00666 0.3601 0.000757

Decyl alcohol, 99% 7.196 0.00618 0.8519 0.000733

4-t-Butylcyclohexanol,

mixture of isomers

5.922 0.00644 0.2983 0.00199

CR, compression ratio; RMSD, root-mean-square derivative.

Figure 3. The IR spectra of tetrachloroethylene.

M. Li et al.180

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
3
:
0
1
 
3
0
 
J
a
n
u
a
r
y
 
2
0
1
1



expected that a higher CR can be achieved if we compress the IR spectrum

with data length longer than 460.

CONCLUSIONS

The algorithm with the use of EZW and the Huffman coding method was

proposed in this work to compress IR spectra of a few compounds. This

Figure 4. The IR spectra of 1,3,5-triphenylbenzene.

Table 4. Results of comparison

Spectra

Method I Method II

PercentageCR RMSD CR RMSD

Tridecane, 99þ% 8.43 0.0040 6.39 0.0042 31.9

(1S)-(2)-b-Pinene, 98% 6.23 0.0068 3.93 0.0068 58.5

1-Chlorohexadecane, 99% 7.71 0.0044 5.54 0.0044 39.2

1,5-Diiodopentane, 97% 6.79 0.0043 4.04 0.0043 68.1

Pentachloroethane, 96% 8.43 0.0037 6.67 0.0037 26.4

Tetrachloroethylene, 99þ% 11.1 0.0055 11 0.0055 0.909

1,3,5-Triphenylbenzene, 97% 5.35 0.0058 3.24 0.0058 65.1

3-Chlorobenzyl chloride, 98% 6.15 0.0060 3.74 0.0060 64.4

Decyl alcohol, 99% 7.71 0.0056 5.97 0.0056 29.1

4-t-Butylcyclohexanol,

mixture of isomers

5.91 0.0052 3.71 0.0052 59.3

Average 7.381 0.00513 5.423 0.00515 36.1

Standard deviation 1.691 0.000994 2.323 0.000971

CR, compression ratio; RMSD, root-mean-square derivative.
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kind of technique sufficiently takes advantage of not only the property that

there are many small-amplitude values in wavelet coefficients but also the

self-similarities of wavelet coefficients at various resolutions. The results

showed that the performance of the proposed compression method is much

better than those suggested in previous studies.
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A Diagram Showing the Compression Procedure of IR
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APPENDIX 2

A Diagram Showing the Decompression Procedure of IR
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